ARTICLE | Maintenance-Free Modular Monopoles
DOWNLOAD PDF A modular composite monopole combines structural rigidity, strength and height capability, tower characteristics needed by the broadband and Wi-Fi industries. Composite poles are relatively maintenance-free and environmentally benign. By Kevin C. Coates A medium-sized crane is positioned to hoist a 93-foot RS monopole. The installation did not require a concrete foundation. From the time the crane arrived until the time the pole was guyed into place, about one hour elapsed. Access to widespread, reliable, and affordable broadband Internet service for rural customers is a technical and financial challenge. The cost of providing extensive coverage is always weighed against the ability of service providers to recover their deployment costs through competitive (i.e., affordable) user fees. With governments covering much of the initial infrastructure capital costs, the economics can work so that rural communities have a viable option to purchase high-speed Internet access. Finding ways to lower deployment and maintenance costs only improves the economics. The structure upon which a piece of broadband equipment sits can represent a considerable portion of a system’s network investment. And, once they are in place, these structures need to withstand the daily onslaught of weathering with minimal need for maintenance over time. In other words, the more sustainable and resilient a structure, the more it proves to be cost effective. With the introduction of high-strength, maintenance-free composite poles, broadband providers now have an extremely cost-effective platform upon which to site their equipment. Not only do composite materials drastically reduce the frequency of pole inspections and the need for pole maintenance, but also composite poles are often the lowest-cost and fastest structures to erect for Wi-Fi providers. Those companies that have already chosen to deploy them see these new composite poles as game changers to their bottom lines. From R&D to the field Because of the confluence of advances in material science, some innovative manufacturing methods and some timely marketing, composite poles are now the latest option in the toolbox for delivering cost-effective wireless Internet service. However, not all composite poles are designed or manufactured the same nor are they all well suited for use in broadband infrastructure. Otherwise known as fiber-reinforced polymers (FRPs), composite pole technology was originally conceived and designed to support electric power transmission and distribution lines. Although they are lightweight, FRPs are stronger than steel. Their strength is derived from combining E-glass fibers with various combinations of thermoset resins. Several manufacturers provide electric utilities with composite poles, and each company tightly guards its own proprietary composite formula along with its manufacturing methods. All composite poles are stronger than steel and do not corrode, and their light weight makes them faster and easier to erect. They are fire resistant and impervious to insects. They do not conduct electricity. These new poles have a rated service life of 80 years, and they are also maintenance free. Of particular interest to the broadband community, composite poles do not interfere with transmission signals. One FRP product, made by RS Technologies Inc. of Calgary, Alberta, Canada, is particularly well suited for the broadband arena. Its design allows network operators to easily configure customized poles from standard modules based on the unique conditions of the installation site. Because these monopoles are composed of tapered sections, complete monopoles are shipped with the modules nested one inside another and assembled at a staging area. Because the length of the modules is always less than 37 feet (11.3 meters), they require no transport permits and, as a result, are faster, easier, and less costly to ship. The larger-diameter modules are especially well suited for the tight deflection tolerances required for broadband’s targeted line-of-sight microwave backhaul. If it’s necessary to increase the height of a pole to accommodate new equipment for extending the signal further than originally specified, additional modules can be added to increase overall pole height. RS poles can reach above-ground heights of up to 135 feet (41 meters). Throughout the world, utilities and broadband providers are now beginning to deploy these new poles with greater frequency and with excellent results. The stories of three broadband providers in North America are indicative of the difference composite modular monopoles can make to a system. Strength and durability In December 2008, a brutal storm slammed the northeastern part of North America and blanketed the area with a layer of ice up to 1-1/2 inches thick. Wooden utility poles snapped like toothpicks after heavily laden trees fell onto power lines and poles, and weeks went by before the power grid was completely restored. The most time-consuming, dangerous, miserable and expensive part of grid reconstruction was setting new power poles in frozen soil. This can also apply to any broadband structure that might go down in a winter storm. A December 2008 ice storm snapped wooden poles owned by the Princeton, Mass., Municipal Light Department, but not their dual-use composite poles. The 75- to 80-foot composite poles were used for both electric power delivery and top-mounted broadband antennas. After the storm, only one wireless broadband transceiver was left in operation in Princeton, Mass., and it sat atop one of 24 dual-use RS monopoles that were all undamaged. Princeton Municipal Light Department General Manager Jonathan Fitch explained that the utility uses 75- to 80-foot monopoles so they can support power lines on crossarms at lower levels and reserve the upper reaches of the poles for broadband equipment. He said that in the aftermath of the storm, 150 wood poles were destroyed (out of a total of about 2,900 poles) and one-third of the wires in his utility’s 34-square-mile grid were on the ground. The strength and resilience of composites for supporting sensitive electronics and electric power lines in severe weather conditions were instantly obvious to Fitch. Getting Wi-Fi to the people Two North American rural broadband initiatives worked fast to implement Internet access in the summer of 2009 using RS monopoles as their support structures, one in Vermont and New Hampshire and the other in Nova Scotia. This May 2009 RS composite monopole installation in Nova Scotia provides and example of fast, direct-bury installations. These poles saved thousands of dollars by not requiring foundation